N-Channel Power MOSFET 600 V, 8.0 Ω

Features

- 100% Avalanche Tested
- Extremely High dv/dt Capability
- Gate Charge Minimized
- Zener-protected
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS

ABSOLUTE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS} 600		V
Gate-to-Source Voltage	V _{GS}	±30	V
Continuous Drain Current $R_{\theta JA}$ Steady State, $T_C = 25^{\circ}C$	Ι _D	0.3	Α
Continuous Drain Current $R_{\theta JA}$ Steady State, $T_C = 100^{\circ}C$	Ι _D	0.21	Α
	P _D	2.0	W
Pulsed Drain Current	I _{DM}	5	Α
Continuous Source Current (Body Diode)	I _S	2.2	Α
Single Pulse Drain-to-Source Avalanche Energy (I _D = 1.4 A)	EAS	38	mJ
Peak Diode Recovery (Note 1)	dV/dt	4.5	V/ns
Maximum Temperature for Soldering Leads	TL	260	°C
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

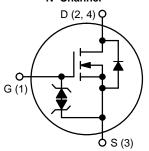
1. $I_S < 2.2 \text{ A}$, $di/dt \le 200 \text{ A/}\mu\text{s}$, $V_{DD} \le BV_{DSS}$, $T_J = +150^{\circ}\text{C}$

THERMAL RESISTANCE

Parameter	Symbol	Value	Unit
Junction-to-Ambient Steady State NDT02N60Z (Note 2) NDT02N60Z (Note 3)	$R_{\theta JA}$	61 148	°C/W

- 2. Surface mounted on FR4 board using 1" sq. pad size
- (Cu area = 1.127" sq. [2 oz] including traces)

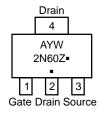
 3. Surface–mounted on FR4 board using minimum recommended pad size (Cu area = 0.026" sq. [2 oz]).



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX		
600 V	8.0 Ω @ 10 V		


N-Channel

MARKING DIAGRAM

SOT-223 CASE 318E STYLE 3

= Assembly Location

= Year W = Work Week

2N60Z = Specific Device Code = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Test Condition	s	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA		600			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Reference to 25°C, I _D = 1 mA			605		mV/°C
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = 600 V, V _{GS} = 0 V	$T_J = 25^{\circ}C$			1	μΑ
			T _J = 125°C			50	1
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = ±20 V				±10	μΑ
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}$, $I_D = 50$) μΑ	3.0	3.9	4.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	Reference to 25°C, I _D	= 50 μΑ		10.2		mV/°C
Static Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 0$.7 A		5.9	8.0	Ω
Forward Transconductance	9FS	$V_{DS} = 15 \text{ V}, I_{D} = 0$.7 A		1.3		S
DYNAMIC CHARACTERISTICS							
Input Capacitance (Note 5)	C _{iss}				170		pF
Output Capacitance (Note 5)	C _{oss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz			22		1
Reverse Transfer Capacitance (Note 5)	C _{rss}		•		4.8		1
Effective output capacitance, energy related (Note 7)	C _{o(er)}	$V_{GS} = 0 \text{ V}, V_{DS} = 0 \text{ to } 480 \text{ V}$			7.8]
Effective output capacitance, time related (Note 8)	C _{o(tr)}	I_D = constant, V_{GS} = 0 V, V_{DS} = 0 to 480 V			12.4		1
Total Gate Charge (Note 5)	Q_g	V _{DS} = 300 V, I _D = 1.6 A, V _{GS} = 10 V			7.4		nC
Gate-to-Source Charge (Note 5)	Q _{gs}				1.8		1
Gate-to-Drain ("Miller") Charge (Note 5)	Q _{gd}				3.8		1
Plateau Voltage	V _{GP}				6.4		V
Gate Resistance	Rg				11.5		Ω
RESISTIVE SWITCHING CHARACTERIS	TICS (Note 6)						
Turn-on Delay Time	t _{d(on)}				10		ns
Rise Time	t _r	V _{DD} = 300 V, I _D = 1	.6 A,		6		1
Turn-off Delay Time	t _{d(off)}	$V_{DD} = 300 \text{ V, } I_{D} = 1.6 \text{ A,}$ $V_{GS} = 10 \text{ V, } R_{G} = 0 \Omega$			14		1
Fall Time	t _f				8		1
SOURCE-DRAIN DIODE CHARACTERIS	STICS						
Diode Forward Voltage	V_{SD}	$I_S = 1.6 \text{ A}, V_{GS} = 0 \text{ V}$ $T_J = 25^{\circ}\text{C}$ $T_J = 100^{\circ}\text{C}$	T _J = 25°C		0.9	1.2	V
				0.8		1	
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 \text{ V}, V_{DD} = 30 \text{ V}, I_{S} = 1.6 \text{ A},$ $d_i/d_t = 100 \text{ A/}\mu\text{s}$			230		ns
Charge Time	ta				50		1
Discharge Time	t _b				180		1
Reverse Recovery Charge	Q _{rr}				495		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 4. Pulse Width ≤ 380 μs, Duty Cycle ≤ 2%.
- 5. Guaranteed by design.
- Switching characteristics are independent of operating junction temperatures.
 C_{o(er)} is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{(BR)DSS}
 C_{o(tr)} is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{(BR)DSS}

TYPICAL CHARACTERISTICS

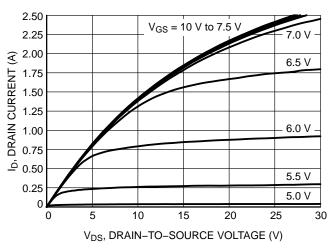


Figure 1. On-Region Characteristics

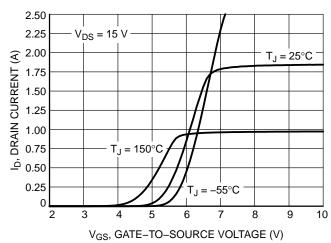


Figure 2. Transfer Characteristics

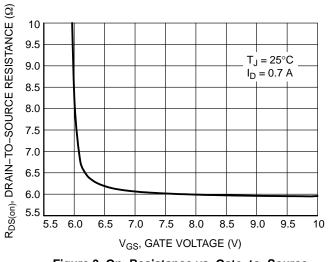


Figure 3. On-Resistance vs. Gate-to-Source Voltage

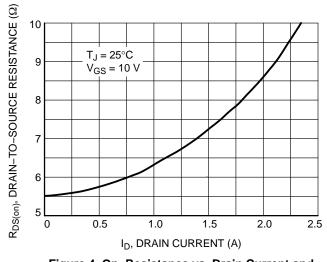


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

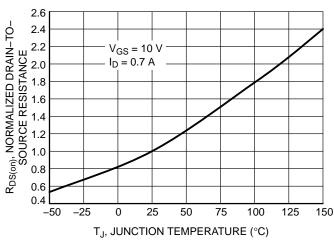


Figure 5. On–Resistance Variation with Temperature

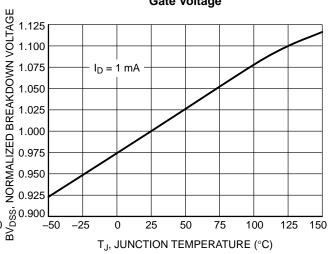


Figure 6. Breakdown Voltage Variation with Temperature

TYPICAL CHARACTERISTICS

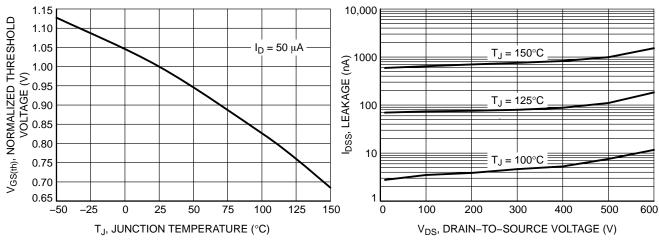


Figure 7. Threshold Voltage Variation with Temperature

Figure 8. Drain-to-Source Leakage Current vs. Voltage

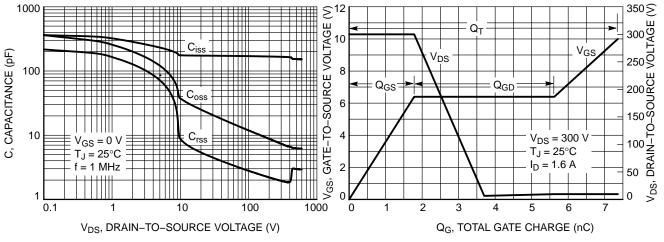


Figure 9. Capacitance Variation

Figure 10. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

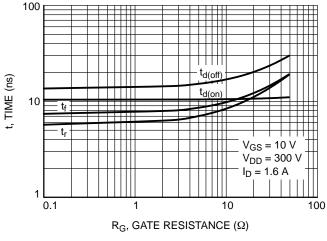


Figure 11. Resistive Switching Time Variation vs. Gate Resistance

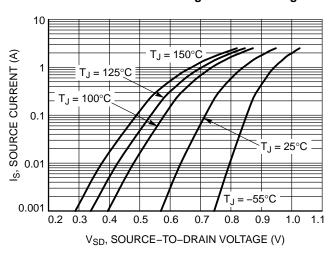


Figure 12. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

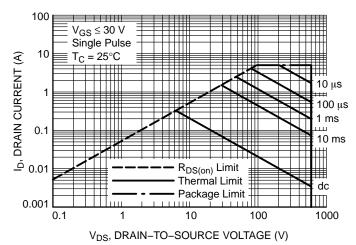


Figure 13. Maximum Rated Forward Biased Safe Operating Area

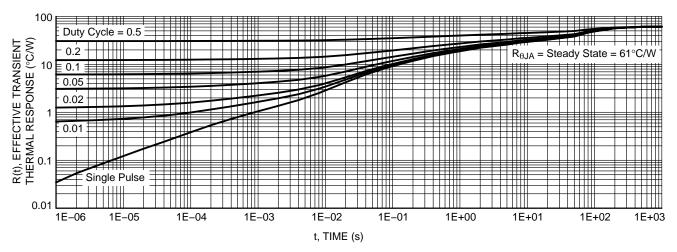
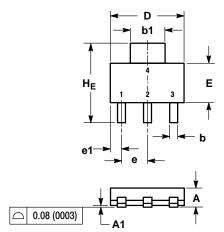
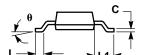


Figure 14. Thermal Impedance (Junction-to-Ambient)

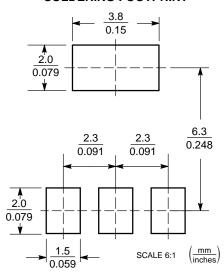

ORDERING INFORMATION


Device	Package	Shipping [†]
NDT02N60ZT1G	SOT-223	1000 / Tape & Reel
NDT02N60ZT3G	(Pb-Free, Halogen Free)	4000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE N


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCH.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008	-	
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	-	10°	0°	_	10°

STYLE 3: PIN 1. GATE

2. DRAIN SOURCE 4. DRAIN

SOLDERING FOOTPRINT

ON Semiconductor and in are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative